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Abstract This paper specifies the panel data experimental design condition under 
which ordinary least squares, fixed effects, and random effects estimators yield 
identical estimates of treatment effects. This condition is relevant to the large body 
of laboratory experimental research that generates panel data. Although the point 
estimates and the true standard errors of the estimated average treatment effects are 
identical across the three estimators, the estimated standard errors differ. A standard 
F test as well as asymptotic reasoning guide the choice of which estimated standard 
errors are the appropriate ones to use for statistical inference. 
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1 Introduction 
 

In both experimental and non-experimental settings the advantages of panel data 
methods are widely recognized. Because of repeated observations in experiments, 
experimental data often constitute a panel. The presence of subject heterogeneity 
can lead to inefficient estimation by ordinary least squares (OLS).1 Under these 
circumstances either fixed effects (FE) or random effects (RE) would be the 
estimator of choice.  In this paper we demonstrate, both formally and with an 
empirical example from the literature, that for a panel data set generated by a 
symmetric design in which every subject faces every treatment exactly the same 
number of times, OLS, FE, and RE estimators yield identical treatment effect 
estimates: Result 1. Although the true standard errors would be identical for all three 
panel data estimators, it is shown below that the estimated standard errors for the 
treatment effects are identical between FE and RE but differ from those under OLS: 
Result 2. Typically, the experimentalist would want to use the FE estimated standard 
errors for statistical inference: Result 3. 

In this paper we show how a common experimental design exactly conforms to 
the conceptual framework of Mundlak (1968). The importance of our results for 
researchers, especially experimental economists, is threefold. We show why the 
choice between the FE and the RE estimators is moot in important applied contexts, 
because these are one and the same estimator. Moreover, the estimated average 
treatment effects for FE and RE are identical to those obtained from (pooled) OLS. 
Lastly, we show that the only remaining choice is to decide whether to use the OLS 
standard errors or the FE/RE standard errors in finite samples. A standard F test as 
well as asymptotic reasoning guide the choice of which estimated standard errors 
are the appropriate ones to use for statistical inference. 

 
 

2 Selected experimental studies 
 

One can find a number of experimental studies that generate panel data which 
satisfy the symmetric treatment design. Dickinson et al. (2009) is an experimental 
exploration of the effects of alternative notions of employment risk on individual 
subject wage contracts. Data generated by a symmetric design were used to estimate 
average treatment effects. The institutional setting for this empirical example is 
open pit trading implemented by an oral double auction design. Smith et al. (1981) 
is a classic paper that implemented a computerized, double-auction design to 
document the potential for non-binding  price floors and ceilings to bias  price 
convergence relative to the competitive equilibrium. The symmetric design arose 
from each market group’s exposure to the same treatments the same number of 
times. These symmetric design properties also apply at the level of individual buyer 
and seller behavior because individual subjects would constitute the cross-sectional 
observations for a study of the effects of the price control treatments on bids and 
offers, or surplus. In a recent paper Fü llbrunn et al. (2015) conduct experiments to 

 
1   Often refered to as ‘‘pooled’’ OLS when applied to panel data. 



 

 

 

examine the use of fall back options in second price auctions. A symmetric design is 
present because all subjects are exposed to the same treatments the same number of 
times. 

In a recent paper, Dickinson et al. (2014) examine statistical discrimination in 
which two groups of subjects differentiated by their variance of productivity 
outcomes compete for jobs in an oral double auction setting. Since all subjects do 
not participate in all treatments, our estimator equivalence results do not apply to 
the full sample. Nevertheless, our equivalence results do apply to subsamples for 
which the subjects face the same exogenous treatments the same number of times. 
Cason et al. (2010) examines endogenous entry into a winner-take-all tournament 
versus a proportional-payment scheme. All subjects are exposed to the same 
treatments the same number of times, hence the symmetric design is present. Because 
binary choice RE probit models were estimated and RE probit is a nonlinear 
estimator, our results do not apply in this case. However, our estimator equivalance 
results would apply to panel data estimation of linear probability models of binary 
choice. 

 
 

3 Experimental treatment models 
 

Khuri (1992) illustrates the equivalence of FE and RE in a structural engineering 
experimental setting. In a somewhat different context Oaxaca et al. (2003) 
demonstrate the equivalence between pooled (cross-section and time-series) OLS 
estimates of the effects of time-invariant regressors and a two-stage feasible 
generalized least squares (FGLS) estimator of these effects. Mundlak’s classic paper 
characterized as misguided the preoccupation of researchers with deciding whether 
fixed effects (FE) or random effects (RE) is the correct model. Mundlak shows that 
when one conditions on the sample individual (subject) effects, the FE and RE 
estimators are the same. Furthermore, Mundlak shows that in a correctly specified 
model, meaning that explicit account is taken of the relationship between the 
individual effects and the regressors, the RE estimator is identical to the FE 
estimator. In particular Mundlak shows that when individual effects are orthogonal 
to the regressors, the RE generalized least squares (GLS) estimator is identical to the 
FE within estimator. 

We begin with a general specification of a balanced design experimental 
treatment model: 

Yit ¼ a þ Xitb þ Eit 

where Yit is the experimental outcome variable, Xit is a 1 x K vector of exogenous 
treatment indicator variables, b is a K x 1 vector of average treatment effects, 
i ¼ 1; . .  .; N (subjects) and t ¼ 1; . .  .; T: Counting one treatment indicator variable 
left out as the reference category, there are a total of K ? 1 treatments. Given the 
classical experimental design setup with exogenously determined treatments (fixed 
regressors), there is no correlation between Xit  and the disturbance term Eit : In the 



 

 

 

case of the classical regression model where Eit is i.i.d, OLS would be the estimator 
of choice. 

The FE model arises when the intercept terms ai  are allowed to vary across 
subjects: 

Yit ¼ ai þ Xitb þ Eit : 

In this case the average treatment effects captured by the parameter vector b reflect 
the effects of each individual’s treatment effect relative to the excluded treatment. 
The fixed effect parameter ai can be viewed as an ‘‘individual’’ treatment effect 
since the model can written as 

 
Kþ1 

Yit ¼ 
X 

dkiXikt þ Eit 
k¼1 

Kþ1 

¼ d1i þ 
X

ðdki - d1iÞXikt þ Eit ; 
k¼2 

Kþ1 

¼ ai þ 
X 

bk þ Eit 
k¼2 

where without loss of generality Treatment 1 is the left out reference category, ai ¼ 
d1i; and bk ¼ dki - d1i 8 i: Absent the usual left out reference group normalization or 
some restriction on the parameters, none of the individual treatment effects ðdkiÞ are 
identified. Subject to the usual excluded reference group normalization, we see that 
although the individual treatment effects ai and dki differ across subjects, the differ- 
ences between the individual treatment effects dki - d1i are invariant across subjects 
and are therefore the same as the average treatment effects. The FE model can be 
estimated by OLS with subject indicator variables, Least Squares Dummy Variable 
(LSDV), or equivalently in group deviation form (the within estimator). 

Finally, the RE model arises if we assume that ai ¼ a þ ui: 

Yit ¼ a þ Xitb þ Eit þ ui ; 

where ui is assumed to be i.i.d. and by the experimental design would be uncor- 
related with Xit : Since the error process in the RE model yields a scalar vari- 
ance/covariance matrix, i.e. constant variances and uncorrelated errors, the model is 
efficiently estimated by GLS (or FGLS when the true error variances have to be 
estimated). 

 
 

4 Panel data estimators 
 

An additonal estimator associated with panel data methods is the group means/be- 
tween estimator. In this case the sample is collapsed down to a cross-section in 
which the variables are the sample means for each subject. The average treatment 
effect estimators corresponding to the OLS, FE, group means, and RE models are 
shown below (see Judge et al. 1980, p. 329–334). 
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where X is a NT x K observation matrix on the treatment indicator variables, Y is a 
NT x 1 vector of observations on the experimental outcome variable, iNT and iT are 
NT x 1 and T x 1 vectors of 1’s, M denotes the sample moment matrix, w denotes 

r2 
the within estimator, b denotes the between estimator, w ¼ E ; r2 and r2 are 

r2 2 E u 

respectively the variances of Eit  and ui: 
E þ Tru 

Following Greene (2008, pp.191, 192, 202,203), we exploit the fact that the total 
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variation in the variables can be expressed as the sum of the within-variation and the 
between-variation: 

Mxx ¼ Mw þ Mb 
xx xx 

Mxy ¼ Mw þ Mb 
xy xy 

Let p equal the number of rounds each treatment is administered. In the symmetric 
experimental design examined in this paper, each treatment appears pN times in the 
sample and T ¼ pðK þ 1Þ is the number of observations per subject. Let Tkit be the 
indicator variable for the kth treatment corresponding to the ith subject in period t: 
Let 
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represent the sample mean of Tkit  for the ith subject. Let 
XN  XT Xkit Np 1 

€  i    1 t    1      

NT 
¼ 

NpðK þ 1Þ 
¼

 ðK þ 1Þ 

represent the overall sample mean of Tkit . It is immediately clear that there is no 
between-variation because each observation involving the treatment observations is 
of the form 

T_ki - T€k ¼ 
1 

ðK þ 1Þ 
-

 
1 

ðK þ 1Þ ¼ 0 ; 

i.e. the average proportion  of  times each subject encounters each treatment is 
identical to the average proportion of times the treatment is encountered when 
averaged over all subjects and periods. Thus for example, in Dickinson et al. (2009) 
all subjects went through K þ 1 ¼ 4 treatments the same number of periods so that 
T_ki ¼ T€k ¼ 0:25: What this means is that the cross-product matrices Mb and Mb are 

null (zero) matrices. Consequently, Mxx ¼ Mw  and Mxy ¼ Mw . This establishes the 
^ ^ ^ xx xy 

result that bols ¼ bw ¼ bfe, i.e. the OLS and FE estimators of the treatment effects 
are identical. It remains to be shown that these treatment effects estimators are 
identical to the RE estimator in the symmetric experimental design. 

In the case of the RE estimator expressed by (4), note that 
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Since these cross-product matrices are null matrices, the RE estimator collapses to 
the within/FE estimator which is in turn the OLS estimator in this case: 
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Thus, we have established Result 1: the OLS, RE, and FE estimators are identical 
under our symmetric experimental design. 
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We  next  consider  estimation  of  the  true  variance/covariance  matrix  for  the 
estimated average treatment effects given by 

Varðb̂ r2ðMxxÞ-1: 

Although the estimators considered here are identical and use the same cross- 
product matrix Mxx; statistical software will use different formulas to estimate the 
residual variance r2 depending on which estimator command is being used to 

estimate b. The question is then which variance/covariance matrix estimator for- 
mula, i.e. which estimate of r2; should be used to estimate Varðb̂ : Typically, the 

E Þ 
RE estimation strategy uses the FE estimates of r2: Consequently, the error variance 

E  can be estimated from either the OLS residuals or from the FE residuals: 
ê0 êols 

2 
eols 

  ols   ¼ 
NT - ðK þ 1Þ 

ê0 êfe 
2 
efe 

fe ¼ 
NT - ðN þ KÞ 

This establishes Result 2: the estimated standard errors for RE and FE are the same 
in our design but differ from those of OLS. 

Clearly the OLS and RE/FE error variance estimators are not independent. Note 
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i t i N 
the estimated constant term in both the OLS and FE case is the average of the 
estimated individual fixed effects. We can express the OLS residuals in terms of the 
FE residuals: 

êols fe 

it   ¼ êit  þ âi - â: 

Squaring both sides of the preceding expression and summing over the t index 
yields: X(
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Next, we sum over the index i to obtain 
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or in vector notation 
ê0 êols ¼ ê0 êfe þ pðK þ 1Þ

X 
âi - âÞ2: 

ols fe ð 
i 

ð5Þ 

If ai ¼ a;  8 i, r̂2 and r̂2 are respectively unbiased and biased estimators of r2. 

2 2 
Likewise if ai 6¼ a for some  
i, 

r̂eols   
and r̂efe   

are respectively biased and unbiased 

estimators of r2: Under the usual normality assumptions a finite sample test of OLS 
vs FE is based on the difference in restricted and unrestricted residuals: (

ê0 êols - ê0 êfe
)
=ðN - 1Þ ½pðK þ 1Þ

X 
i
 2

 

ols fe iðâ - âÞ =ðN - 1Þ '""  FN-1;NT-N-K-1 

ê0 êfe=ðNT - N - K - 1Þ 
¼

 ê0 êfe=ðNT - N - K - 1Þ 

Rejection of the hypothesis that the individual treatment effects relative to the left 
out treatment effect is constant across subjects, ai - a ¼ 0 8i, would favor the FE 
estimated standard errors. 

Asymptotic considerations also provide guidance on the choice of which 
estimated standard errors to use. As is often the case with panel data methods, one 
needs to  consider  T asymptotics  separately from  N asymptotics  and what this 
distinction means in a laboratory experimental setting. A little manipulation of (5) 
and noting that  pðK þ 1Þ ¼ T yields 

2 
eols 

2 
efe 

r
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Under the i.i.d assumptions for Eit ; letting T ! 1 (which for fixed K means letting 
p ! 1) and taking the probability limits of both sides of (6) establishes the result 

plim r̂2 
ðT!1Þ 

¼ plim r̂2 
ðT!1Þ 

þ plim V̂a 
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where V̂a ¼   ð  i  -   Þ   
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and  plim V̂a ¼ 
ðT!1Þ 

  ð  i  -   Þ   
N 

;= 0: It can be shown 

that as the number of experimental rounds p ! 1; r̂2 
2 

is a consistent estimator of 
2 

rE  whether or not ai - a ¼ 0 8 i. On the other hand, it is evident that r̂ eols  
is not a 

consistent estimator of r2 if ai - a 6¼ 0 for some i. 
In an experimental setting it is natural to think of small (fixed) T. In this case if 

N ! 1; we have the result 
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plim r̂2 
ðN!1Þ 

¼  plim r̂2 
ðN!1Þ 

þ plim V̂a 
ðN!1Þ 

¼ r2 þ plim V̂a 

ðN!1Þ ^ 
ðN!1Þ 

where plim Va   ;= 0. It can be shown that as the number of experimental 

subjects N ! 1; r̂2 is a consistent estimator of r2 whether or not ai - a ¼ 0 8i. 

2 2 
As in the case with T asymptotics, r̂eols    

is  not  a  consistent  estimator  of  rE    if 

ai - a 6¼ 0 8i. Thus, plim r̂2 ;=  plim r̂2 ¼ r2  in terms of N or T asymptotics. 

Therefore, unless the F test for OLS vs FE suggests otherwise, the FE estimated 
standard errors  are  the appropriate ones for statistical  inference.  Because it  is 
usually the case that one can reject OLS against FE, we arrive at Result 3: it is 
usually best to use the FE estimated standard errors for treatment effects. 

Another strategy might be to bootstrap the standard errors for b̂: Because the 
estimator for the treatment effects in our framework is linear, bootstrapping may not 
elicit the sort of appeal it enjoys when applied to more complicated estimators. That 
being said, the fact that plim r̂2 ;= plim r̂2 ¼ r2 means one would probably want 

to exploit the assumed data generating process for the FE model to obtain the 
bootstrapped standard errors. 

 
 

5 Discussion 
 

Our basic point is a statistical one in an experimental setting but does not 
necessarily depend on the laboratory institution in any predictable way. While it is 
easiest to motivate our results in the context of individual choice experiments, the 
results would hold for individual behavior in market experiments and also when the 
market group is the unit of observations such as we showed would be possible in 
Smith et al. (1981). Other generalizations are possible such as cross-subject designs. 
A simple example is one in which one group of subjects is exposed only to Treatment 
1, and another group of subjects is exposed only to Treatment 2. Suppose one wants 
to gauge the effects of Treatment 2 vs. Treatment 1 by comparing subjects 
across the two treatments. It can be shown that pooled OLS and RE are identical 
in terms of estimating the average treatment effect for 2 vs. 1. However, FE is not 
defined simply because every observation is associated with only Treatment 1 or 
Treatment 2 but not both. In this case one encounters perfect multicolinearity 
because the treatment indicators correspond exactly to the cross- section fixed 
effects. The subject demeaned values of the treatments are always zero. 

All of the proceeding analysis assumes that there is no cross-sectional correlation 
in the panel data sets. Common shocks and other correlated factors are frequently 



 

 

present in field data but could also be present with experimental data, depending on 
the experimental setting. How would the presence of cross-sectional dependence 
affect our results? De Hoyos and Sarafidis (2006) provides a comprehensive review 
of the literature on the cross-sectional dependence in panel data, including tests for 



 

 

 

the presence of this phenomenon. If there is correlation between cross-section units, 
the equivalence of pooled OLS, FE, and RE still holds. Of course these are not fully 
efficient estimators and the associated estimated standard errors would not be correct. 
If the response is to merely fix up the standard errors with robust estimation of the 
variance/covariance matrix, the pooled OLS, FE and RE estimators would still be 
equivalent and inefficient but the asymptotic standard errors would be correct. 
If some sort of Full Information Maximum Likelihood approach is taken, then there 
is only one estimator of the model which is consistent and asymptotically efficient. 
The distinction between pooled OLS, FE and RE would be moot in this case. 

 
 

6 Empirical example 
 

In the symmetric experimental design of Dickinson et al. (2009), the focus was on the 
roles of various measures of risk on wage contracts. Consequently, only the RE 
estimates and associated standard errors were reported. In the table below we add the 
OLS and FE estimates for the employer sample. Four treatments are introduced that 
correspond to alternative measures of employment risk. The remaining conditioning 
variables consist of indicator variables for each of p = 4 rounds, and 4 indicator 
variables for the order in which a given treatment appears in a given session. 

 
 

 

Wage contract determination (N = 560) 
 

Variables OLS   RE   FE 

 Coefficient Standard 
error 

 Coefficient Standard 
error 

 Coefficient Standard 
error 

Treatment 2 -0.003 0.034  -0.003 0.029  -0.003 0.029 
Treatment 3 -0.028 0.041  -0.028 0.036  -0.028 0.036 
Treatment 4 -0.062 0.033  -0.062 0.029  -0.062 0.029 
Round 2 -0.119 0.032  -0.119 0.028  -0.119 0.028 
Round 3 -0.143 0.032  -0.143 0.028  -0.143 0.028 
Round 4 -0.149 0.032  -0.149 0.028  -0.149 0.028 
Treatment order -0.181 0.039  -0.181 0.034  -0.181 0.034 

2         
Treatment order -0.183 0.033  -0.183 0.029  -0.183 0.029 

3         
Treatment order -0.186 0.034  -0.186 0.029  -0.186 0.029 

4         
Constant 0.861 0.035 0.861 0.038 0.861 0.030 

Data source: Dickinson et al. (2009) 

The estimated treatment effects are seen to be identical between the three 
estimators while their estimated standard errors for OLS are different from the 
identical ones for RE/FE. 



 

 

7 Concluding remarks 
 

This paper shows that a particular type of experimental design is an example of the 
Mundlak (1968) equivalence between fixed effects and random effects estimators. 
In this special experimental setting, OLS, FE, and RE yield identical estimates of 
average treatment effects. Guidance is provided for estimating the residual variance 
to be used in constructing the appropriate standard errors. 

Note that the equivalence of the OLS, FE, and RE panel data estimators is not altered 
by the addition of covariates that are orthogonal to the treatment effects. Examples of 
covariates that are orthogonal to the treatment indicators might be period/round dummies 
(as seen in the Sect. 6) or time-invariant regressors such as gender of the subject. 
Naturally, in the case of FE the estimated treatment effects are unaffected because the 
time-invariant regressors are not present due to being ‘‘swept’’ away by the FE estimator. 
Nevertheless, the estimated treatment effects also remain unchanged for OLS and RE. 
Moreover, the equivalence of these panel data estimators holds in the presence of non- 
orthogonal indicator variables whose values remain unchanged throughout the rounds for 
a given treatment but vary across treatments and subjects, e.g. treatment order indicator 
variables as seen in the empirical example. Of course the estimated treatment effects 
themselves will change with the addition of non-orthogonal covariates. 
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